Selamat Datang di Portal Pendidikan

Teknoligi

Akhmad Khusyairi,M.Eng

Reaktor nuklir dalam perkembangannya memiliki berbagai macam jenis dan teknologi yang digunakan, kategorisasi reaktor nuklir dapat dikelompokkan menjadi beberapa kelompok yang berdasarkan pada beberapaha, diantaranya adalah:

• Kalasifikasi berdasarkan type reaksi nuklir

• Reaktor Nuklir Fisi
Semua PLTN komersial yang ada dinunia menggunakan reaksi nuklir fisi. Pada umumnya reaktor jenis ini menggunakan bahan bakar nuklir Uranium dan reaktor jenis ini akan menghasilkan Plutonium, meskipun dimungkinkan juga menggunakan siklus bahan bakar Thorium. Reaktor fisi dapat dibagi menjadi 2 kelompok besar berdasarkan energy neutron yang digunakan dalam proses fisi, yaitu:

Reaktor termal, reaktor jenis ini menggunakan neutron lambat atau neutron thermal. Hampir semua reaktor yang ada saat ini adalah reaktor jenis reaktor termal. Reaktor ini mempunyai bahan moderasi neutron yang dapat memperlambat neutron hingga mencapai energy termal. Kemungkinan (propabilitas) lebih besar terjadinya reaksi fisi antara neutron termal dan bahan fisil seperti Uranium 235, Plutonium 239 dan Plutonium 241 dan akan mempunyai kemungkinan lebih kecil terjadinya reaksi fisi dengan Uranium 238. Dalam reaktor jenis ini, biasanya pendingin juga berfungsi sebagai moderator neutron, reaktor jenis ini umumnya menggunakan pendingin air dalam tekanan tinggi untuk meningkatkan titik didih air pendingin. Reaktor ini diwadahi dalam suatu tanki reaktor yang didalamnya dilengkapi dengan instrumentasi pemantau dan pengendali reaktor, pelindung radiasi dan gedung containment

Reaktor cepat, reaktor jenis ini menggunakan neutron cepat untuk menghasilkan fisi dalam bahan bakar reaktor nuklir. reaktor jenis ini tidak memiliki moderator neutron, dan menggunakan bahan pendingin yang kurang memoderasi neutron. Untuk tetap menjaga agar reaksi nuklir berantai tetap berjalan maka diperlukan bahan bakar yang mempunyai bahan belah (fissile material) dengan kandungan uranium 235 yang lebih tinggi (lebih dari 20 %). Reaktor cepat mempunyai potensi menghasilkan limbah trasnuranic yang lebih kecil karena semua aktinida dapat terbelah dengan menggunakan neutron cepat, namun reaktor ini sulit untuk dibangun dan mahal dalam pengoperasiannya.
   

• Reaktor Nuklir Fusi
Reaktor jenis ini merupakan teknologi reaktor nuklir yang masih dalam tahap eksperimental, secara umum menggunakan hydrogen sebagai bahan bakarnya.

Gambar 3D PLTN type Pressurized Water Reactor (PWR)

• Klasifikasi berdasarkan bahan moderator
Moderator neutron diperlukan pada reaktor jenis reaktor termal, klasifikasi reaktor jenis ini berdasarkan pada penggunaan bahan moderator salah satu diantaranya adalah bermoderator graphite, reaktor jenis ini menggunakan grafit sebagai bahan moderasi neutron, reaktor yang menggunakan moderator jenis ini diantaranya adalah:

• Gas cooled reactor, yaitu reaktor nuklir yang mempunyai pendingin berbentuk gas, misalnya Magnox, Advanced gas-cooled reaktor (AGR)

Water-cooled reactors, yaitu reaktor dengan menggunakan air sebagai bahan pendingin, misalnya reaktor jenis RBMK.

• HTGR, high temperature gas-cooled reactors, yaitu reaktor suhu tinggi berpendingin gas, misalnya Dragon reaktor, AVR, Peach Botton Nuclear Generating Station unit 1, THTR-300 dan Fort St. Vrain Generating Station.

• HTGR baru, reaktor jenis ini sedang dikembangkan dan dalam tahap pembangunan, diantaranya adalah Pebble bed reactor, Prismatic fuel reactor dan UHTREX (Ultra high temperature reactor experiment)




Sejarah Awal Reaktor Nuklir
Akhmad Khusyairi,M.Eng

Penemuan Neutron

Neutron ditemukan pada tahun 1932, neutron mempunyai andil besar dalam terjadinya proses reaksi nuklir. Konsep reaksi nuklir berantai pada reaksi nuklir dimediasi oleh neutron, yang kemudian direalisasikan tidak lama setelah ditemukanya neutron oleh ilmuwan Hungaria Leo Szilard pada tahun 1933. Dia juga mempatenkan idenya tentang reactor nuklir sederhana pada saat dia bekerja di Admiralty di London. Namun demikian ide tersebut tidak mencantumkan fisi nuklir yang merupakan sumber neutron baru, hal ini disebabkan karena proses tersebut belum ditemukan pada masa itu. Ide Szilard tentang reactor nuklir sederhana tersebut menggunakan reaksi nuklir berantai yang dimediasi neutron pada elemen (unsur) ringan terbukti tidak dapat berjalan (bekerja).

Bombardir Neutron

Inspirasi baru tentang jenis reactor baru yang menggunakan Uranium datang berasal dari Lise Meitner, Fritz Strassman dan Otto Hahn pada tahun 1938 dimana pembombardiran uranium dengan neutron menghasilkan residu Barium, hal inilah yang digunakan oleh mereka sebagai alasan dalam melakukan fisi nuklida uranium. Pada tahun 1939 (Szilard dan Fermi) mengungkapkan bahwa beberapa neutron juga dilepaskan selama terjadinya reaksi fisi, hal ini memberikan kesempatan terjadinya reaksi nuklir berantai yang enam tahun sebelumnya belum terungkap.

Amerika, Pra Perang Dunia II

Pada 2 Agustus 1939, Albert Einstein menandatangi surat yang ditulis oleh Szilard dan ditujukan ke Preiden Frankin D. Roosevelt yang menyarankan bahwa ada indikasi penemuan fisi uranium dapat mengarah pada pengembangan "bom jenis baru yang sangat dahsyat", hal ini memberikan dorongan untuk penelitian reaktor dan fisi. Szilárd dan Einstein saling mengenal dengan baik dan telah bekerja bersama beberapa tahun sebelumnya, namun Einstein tidak pernah berpikir tentang kemungkinan ini untuk energi nuklir sampai Szilard melaporkan hal ini kepadanya.

Tidak lama setelah pasukan Hitler Jerman menginvasi Polandia pada 1939, Perang Dunia II di Eropa dimulai. AS belum secara resmi menyatakan diri perang, tetapi pada bulan Oktober, ketika surat Einstein-Szilard dikirim  ke Roosevelt, ia menyatakan bahwa tujuan melakukan penelitian ini adalah untuk memastikan "Nazi tidak meledakkan kita." Yang kemudian mereka mengikuti Proyek nuklir Amerika Serikat, meskipun dengan beberapa penundaan karena masih ada skeptis (diantaranya dari Fermi) dan juga kebijakan kecil dari sejumlah kecil pejabat pemerintah.  Pada tahun berikutnya Pemerintah AS menerima memorandum Frisch-Peierls dari Inggris, yang menyatakan bahwa jumlah uranium yang dibutuhkan untuk reaksi berantai jauh lebih rendah dari yang pernah terpikir sebelumnya. Memorandum tersebut merupakan produk dari Komite Maud, yang bekerja pada proyek bom atom Inggris, yang dikenal sebagai Tube Alloys, yang kemudian dimasukkan dalam Proyek Manhattan.

Pembangunan Reaktor Nuklir Pertama

Akhirnya, reaktor nuklir buatan pertama, Chicago Pile-1, dibangun di University of Chicago, oleh tim yang dipimpin oleh Enrico Fermi, pada akhir 1942. Pada saat itu, program ini telah mendapatkan tekanan selama satu tahun oleh Pemerintah AS sebelum masuk dalam dalam perang dunia kedua. The Chicago Pile mencapai kritis (reaksi berantai dengan sendirinya) pada tanggal 2 Desember 1942. Struktur pendukung reaktor terbuat dari kayu, dan tumpukan blok grafit yang tertanam dalam 'pseudospheres' atau 'briket' oksida uranium alam
Sesaat setelah Chicago Pile, militer AS mengembangkan sejumlah reaktor nuklir untuk Proyek Manhattan yang dimulai pada tahun 1943. Tujuan utama pengembangan reaktor (terletak di tapak Hanford di negara bagian Washington), adalah produksi massal plutonium untuk senjata nuklir. Fermi dan Szilard mendaftarkan paten reaktor pada 19 Desember 1944. Namun penerbitan patennya tertunda selama 10 tahun karena kerahasiaan perang.

PLTN Pertama

"Pembangkit listrik tenaga nuklir pertama di Dunia" yang diklaim dibuat di tapak EBR-I, yang sekarang menjadi museum dekat Arco, Idaho. LMFBR eksperimental yang dioperasikan oleh USNRC menghasilkan daya sebesar 0,8 kW pada saat ujicoba yang dilakukan pada 20 Desember 1951 dan 100 kW (listrik) pada hari berikutnya, LMFBR ini memiliki output desain 200 kW (listrik).
Selain untuk kepentingan militer, penggunaan dan pengembangan reactor nuklir memiliki alasan politik dalam penggunaan energi nuklir untuk kepentingan sipil. Presiden AS Dwight Eisenhower memperkenalkan nuklir AS untuk Perdamaian pada Majelis Umum PBB pada tanggal 8 Desember 1953. Diplomasi ini menyebabkan penyebaran teknologi reaktor pada institusi AS dan di seluruh dunia. Pembangkit listrik tenaga nuklir untuk kepentingan sipil pertama dibangun yaitu AM-1 Pembangkit Listrik Nuklir Obninsk, yang diresmikan pada 27 Juni 1954 di Uni Soviet. PLTN ini menghasilkan daya sekitar 5 MW (listrik).

Setelah Perang Dunia II, militer AS mencari kegunaan lain teknologi reaktor nuklir. Penelitian oleh Angkatan Darat dan Angkatan Udara tidak pernah berhasil, namun Angkatan Laut AS berhasil ketika mereka menggunakan tenaga nuklir pada USS Nautilus (SSN-571) pada  17 Januari 1955.

Pembangkit listrik nuklir komersial pertama, Calder Hall di Sellafield, Inggris dioperasikan pada tahun 1956 dengan kapasitas awal 50 MW (kemudian 200 MW). Reaktor nuklir pertama portabel "Alco AM-2A" digunakan untuk menghasilkan tenaga listrik (2 MW) untuk Camp Century pada 1960.



Komponen Utama PLTN
    Bahan bakar Nuklir
    Teras (Core) reactor nuklir
    Moderator neutron
    Racun Neutron
    Pendingin
    Batang kendali
    Bejana/tangki reaktor
    Boiler feedwater pump
    Pembangkit uap Steam generators (tidak ada pada PLTN jenis BWR)
    Turbine uap
    Generator listrik
    Condenser
    Cooling tower (tidak selalu diperlukan)
    System limbah radioaktif
    Lantai Refueling
    Kolam bahan bakar bekas
    Sistem keselamatan nuklir
    Reactor Protective System (RPS)
    Emergency Diesel Generators
    Emergency Core Cooling Systems (ECCS)
    Standby Liquid Control System (emergency boron injection, BWRs only)
    Essential service water system (ESWS)
    Gedung Containment
    Ruang kendali
    Fasilitas operasi kedaruratan
    Fasilitas pelatihan nuklir (umumnya terdiri dari simulator ruang kendali)





Prinsip Kerja PLTN

Akhmad Khusyairi,M. Eng
Reaktor nuklir adalah salah satu instalasi nuklir tempat terjadinya reaksi nuklir berantai yang terkendali, sedangkan PLTN atau pembangkit listrik tenaga nuklir adalah salah satu instalasi nuklir yang menggunakan reaktor nuklir dalam membangkitkan uap yang akan digunakan untuk menggerakkan turbin uap. Seperti halnya stasiun pembangkit listrik yang lainnya, PLTN mengkonversi energy thermal menjadi energy listrik. Energi thermal yang dihasilkan dari PLTN berasal dari reaksi nuklir fisi terkendali.

Gambar Ilustrasi PLTN type PWR

Pembangkitan Panas
Teras reaktor nuklir membengkitkan panas dengan dengan beberapa cara, diantaranya;
Energy kinetic dari produk fisi dikonversi menjadi energy thermal ketika nuklida ini bertumbukan dengan atom media pendingin.
Sinar gamma yang dihasilkan dari reaksi fisi dikonversi menjadi panas
Panas dihasilkan dari peluruhan radioaktif dan material lain yang teraktivasi oleh penyerapan neutron. Panas ini dikenal dengan decay heat, panas ini  merupakan sumber panas yang tersisa setelah reactor dipadamkan.
Satu kilogram Uranium-235 (U-235) yang dibakar dalam reactor nuklir menghasilkan energy yang sama dengan 3000 ton batubara yang dibakar secara konvensional dalam PLTU batubara (Enengi yang dihasilkan sebesar 7.2x1013 Joule/kg U-235 dan 2.4x107 Joule/kg Batubara).

Pendinginan
Pendingin reactor nu
klir yag umumnya menggunakan air (beberapa jenis reactor menggunakan gas, logam cair dan garam cair) disirkulasi melewati teras reactor untuk menyerap panas yang dihasilkan dari reaksi nuklir. panas tersebut dapat mendidihkan dan menghasilkan uap air.  Beberapa jenis reactor menggunakan sistem pendingin yang secara fisik terpisah dengan air pendingin yang digunakan untuk mendinginkan teras reactor.

Kendali Reaktivitas
Pengendalian daya yang dihasilkan dari reactor nuklir (PLTN,red) dilakukan dengan cara mengatur banyaknya neutron yang dapat menghasilkan reaksi fisi. Batang kendali dibuat sebagai racun neutron yang berfungsi untuk menyerap neutron. Penyerapan neutron yang semakin banyak oleh batang kendali mengakibatkan penurunan jumlah neutron yang bisa mengakibatkan terjadinya reaksi fisi, dengan demikian masuknya batang kendali semakin dalam ke dalam teras reactor akan mengurangi daya yang dihasilkan reactor nuklir dan begitu juga sebaliknya, pengangkatan/pencabutan batang kendali dari teras reactor nuklir dapat meningkatkan daya reactor nuklir.

Pembangkitan Daya Elektrik
Energi yang dihasilkan dari proses fisi menghasilkan panas yang kemudian dilakukan konversi energy kedalam bentuk yang dapat dimanfaatkan secara umum, yaitu energy listrik. Secara umum metode yang digunakan yaitu panas yang dihasilkan dari reaksi fisi digunakan untuk memanaskan pendingin yang kemudian digunakan untuk membangkitkan uap. Uap yang dihasilkan ini kemudian dimanfaatkan untuk menggerakkan turbin uap untuk menghasilkan listrik.
Share this post :

Posting Komentar

PAPAN PENGUMUMAN

Statistik Blog

 
Support : dzulAceh | DownloadRPP | BerintaNanggroe
Copyright © 2015. IPNU IPPNU PASURUHAN LOR - All Rights Reserved
Template by Cara Gampang Modified by dzulAceh
Proudly powered by Blogger